本文目录一览:
应用题板块-行程问题之相遇追及(小学四年级奥数题)
行程问题之相遇追及(小学四年级奥数题)相遇问题基本概念:小王在A地要去B地,小张在B地要去A地,两人分别行走一段时间后,就会在途中相遇。
解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。(三)相离问题 两个运动物体由于背向运动而相离,就是相离问题。解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。
相遇问题:AB两地相距600米,甲乙两车同时分别从两地相向而行,甲速度35米/秒,乙速度25米/秒,问甲乙两车相遇时间?解析:600÷(25+35)=10(秒)追及问题:小红与小明都从甲村到乙村去办事,小红以每分120米的速度先走了一会,小明以每分140米的速度在后面追,用了5分钟就追上了。
行程问题中有些题目,题干往往会设定是有人绕着公园或者在田径场运动,运动的路线能形成闭环,这类问题我们称之为环形相遇追及问题。下面就带大家了解一下环形相遇追及问题,并且找到解决它的方法。
速度和为360÷2=180米,速度差为360÷10=36米,甲速(180+36)÷2=108米,乙速(180-36)÷2=72米。
则x=600-420=180米。答案:A. 180米。总结环形n次相遇追及问题,需要理解环形路线的特点,掌握相遇和追及问题的基本公式和比例关系。通过题干条件列方程或利用比例关系,可以快速求得答案。同直线型问题一样,需要理解题干的过程,自己尝试去分析整个过程,记住结论,以便在考试中快速应用。
小学四年级奥数题及答案50题
【答案】从左起三个数一组,且相邻三个数和相等。一组中前两个数和为(53324-53236)/2=44。一组中前三个数和为(53324-44)/666=80。所以一组中第三个数为80-44=36。也就是从左擦去第1个数后的第50个数为36。
参考答案:20只,包括手指甲和脚指甲。因为他付给售货员40元,所以只找给他2元。0条,因为他钓的鱼是不存在的。6里,36里。只要教小狗转过身子用后脚抓骨头,就行了。
第三题【题文】如图所示,地板由4个同样大小的正六边形拼成。每个正六边形地板砖的面积是18,问:图中阴影部分的面积是多少?【答案】解:根据毕克定理公式1:S=2N+L-2,在阴影部分中,N=6,L=3,代入公式,有 S=2×6+3-2=13(个)面积单位,也就是表示13个小正三角形的面积。
有一堆棋子,把它四等分后剩下一枚,取走三份又一枚;剩下的再四等分又剩一枚,再取走三份又一枚;剩下的再四等分又剩一枚。问:原来至少有多少枚棋子?重叠问题:某班有学生50人,其中35人会游泳,38人会骑自行车,40人会溜冰,46人会打乒乓球。
小学四年级奥数题详解:挖了多少树坑
答案:关键在于条件的转换,把如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑, 转换成每人挖6个树坑,还差2×(6-4)个树坑。则本题成为一盈一亏的盈亏问题。所以〔3+2×(6-4)〕÷ (6-5)=7(人),7×5+3=38(个)树坑。
分析与解如果每人都挖6个树坑,那么少(6-4)×2=4个树坑,两次相差4+3=7个树坑。这是因为两种分配方案每人挖的相差6-5=1个树坑。所以,少先队员一共有7÷1=7人,一共挖5×7+3=38个树坑。练 习 五 1,老师给幼儿园的小朋友分苹果。
.少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑。
小学奥数盈亏问题 1.少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑。请问,共有多少名少先队员?共挖了多少树坑?2.钢笔与圆珠笔每支相差1元2角,小明带的钱买5支钢笔差1元5角,买8支圆珠笔多6角。
少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑。请问,共有多少名少先队员?共挖了多少树坑? 5学校安排学生到会议室听报告。如果每3人坐一条长椅,那么剩下48人没有坐;若每5人坐一条长椅,则刚好空出两条长椅。
解解这道题的关键在于条件的转换,把如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑, 转换成每人挖6个树坑,还差2×(6-4)个树坑。则本题成为一盈一亏的盈亏问题。所以〔3+2×(6-4)〕÷(6-5)=7(人),7×5+3=38(个)树坑。
小学四年级等量代换奥数题【五篇】
【 #小学奥数# 导语】明天,这是个美丽灿烂、辉映着五光十色的迷人的字眼。愿你的明天无限美丽、无限灿烂、无限迷人!以下是 为大家整理的《小学四年级等量代换奥数题【五篇】》供您查阅。【篇一】难度:一只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量。
一只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量。
“曹冲称象”是运用了“等量代换”的思考方法:两个完全相等的量,可以互相代换。解数学题,经常会用到这种思考方法。百货商店运来300双球鞋,分别装在2个木箱、6个纸箱里。
行桃树和5行梨树共200棵,用等量代换考虑(1行桃树=1行梨树):可以理解为10行桃树共200棵,那题目问题:9行桃树和9行梨树可以理解为,共18行桃树。那已知10行桃树共200棵,那18行桃树共多少棵了?200*10/18=360棵。
小学二年级奥数题解析:等量代换 题目描述:10个杏子的重量等于1个梨子和2个橘子的重量,4个杏子和1个橘子的重量等于1个梨子的重量。求1个梨子的重量等于几个杏子的重量? 考点:基础的等量代换问题。
本文来自作者[犁访冬]投稿,不代表gggce号立场,如若转载,请注明出处:https://wap.gggce.com/miao/818.html
评论列表(3条)
我是gggce号的签约作者“犁访冬”
本文概览:本文目录一览: 1、应用题板块-行程问题之相遇追及(小学四年级奥数题) 2、...
文章不错《小学四年级奥数题及答案(小学四年级奥数题大全)》内容很有帮助